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Abstract 
 

In this paper, we present a mechanism for runtime 
updating of all kernel modules of a highly modular 
dynamic real-time operating system. Our approach can 
help solve the lack of adaptability, extensibility, and 
flexibility of existing real-time operating systems. The 
dynamic real-time operating system will efficiently 
support a wide range of applications since any kernel 
module can be dynamically loaded at runtime to exactly 
suit the applications without necessitating a reboot of 
the system. 
 
1. Introduction 
 

Existing Real-Time Operating Systems (RTOSs) provide 
fixed interfaces and implementations of services and 
resources. The RTOS services are provided as a set of 
modules or libraries. Often, the RTOS and an application 
are compiled together. The services needed for the 
application are selected by simply setting flags at the time 
of the application build [1]. As a result, this standard 
RTOS compilation methodology prevents updating the 
application or the RTOS at runtime.  However, future 
embedded systems are likely to include a multitude of 
applications, some subset of which changes every few 
months (or possibly every few weeks in some cases).  

Even if a static RTOS were to include all possible 
services, the RTOS would likely become inefficient and 
insufficient for emerging applications, especially when 
real-time considerations are included. A static RTOS 
cannot efficiently support a wide range of applications 
with different service demands. For example, a priority-
based scheduler is suitable for applications where the 
deadline of the highest-priority task is the most important. 
However, this scheduler does not work well in scheduling 
network packets such as video-on-demand and streamed 
audio, where quality of service is required. In order to 

support these applications, the RTOS must be rewritten, 
compiled, and loaded to the device. Fortunately, today’s 
embedded systems tend to support applications of one 
type, e.g., voice or multimedia. However, tomorrow’s 
embedded devices will surely be much more diverse in the 
application set to be supported. 

In this paper, a totally flexible, easily extensible, and 
highly modular Dynamic Real-Time Operating System 
(DRTOS) is introduced. Each kernel module can be 
changed or integrated to the kernel at runtime. Kernel 
services can be specific to each application. The DRTOS 
is adaptable, including all parts of the kernel, even the part 
responsible for dynamic installation of new kernel 
modules! Therefore, the DRTOS can provide efficient and 
sufficient services and satisfy any application’s 
requirements since any kernel module can be dynamically 
loaded to exactly suit the application. 
 
2. Background and Motivation 
 

With the rapid growth of the embedded industry, 
applications such as cellular phones and personal digital 
assistants require more and more functionality in order to 
sell in high volumes. Third generation cellular phones will 
also be upgradeable over the air to allow more internal 
features to be added without the need for physically going 
into a store. To best support new features efficiently, all 
RTOS kernel modules must be updateable at runtime. 

An operating system, which enables system services to 
be defined in an application-specific fashion, offers finer-
grained control over a machine’s resources to an 
application through runtime adaptation of the system to 
application requirements [2]. The services are efficient in 
both functionalities and performance for the application. 
These services come with applications and are loaded 
when the applications need them. This requires a modular 
design of the RTOS. To provide modularity and 
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performance, operating system kernels should have only 
minimal embedded functionality [3]. 

Our primary motivation is to allow all kernel 
components to be updated at runtime on a heterogeneous 
multiprocessor architecture, which was not addressed in 
the previous work [2,3,4]. The approach presented here 
can ease RTOS management by omitting a reboot of the 
system each time a kernel update occurs. All kernel 
components are modular and can be dynamically loaded 
and unloaded as needed. For example, a fixed priority-
based scheduler can be updated to an earliest deadline 
scheduler, written by the application developer, at runtime 
when the application’s requirements change. If a bug fix is 
necessary in one of the DRTOS modules or a newer 
version module is ready to be integrated to the system, 
this can be accomplished without recompilation of the 
whole system.  For future work, we will address security 
issues such as keeping the kernel space free from 
malicious users. 

 
3. Methodology 
 

To support adaptability and flexibility in real-time 
operating systems, the kernel must be simple to enable 
easy modification and allow applications to implement 
system mo dules and services. In this system, dynamic 
runtime loading and linking are necessary. However, the 
methodology used in general-purpose real-time operating 
systems does not fully support such dynamic loading and 
linking of all kernel modules. A methodology to support 
adaptability and flexibility in real-time operating systems is 
presented in the following sections, starting with dynamic 
instantiation of kernel modules, dynamic update of 
modules, and kernel-level API support. 
 
3.1. Kernel Modules 
 

Runtime updating of a real-time operating system 
component requires each kernel component to be 
designed as a module. Each module has its own text and 
data sections. Therefore, switching of one module with 
another consists of changing both the text and the data 
sections in the kernel space. This requires dynamic linking 
of new text and data into the kernel space. The appropriate 
modules for supporting the application are integrated into 
the RTOS and unneeded ones can be removed from the 
RTOS at runtime. 

For a modular and reusable design, an object-oriented 
kernel provides the application programmer a customizable 
operating system [5].  However, to reduce the overhead of 
object-oriented programming, we implement the kernel 
modules in C. As illustrated in Figure 1, a mo dule consists 

of text and data sections. In the data section, there are 
module variables and APIs. The module variables and the 
APIs are equivalent to class fields and methods in object-
oriented programming. 

Since each module can be installed anywhere in the 
kernel space, absolute address references to the module’s 
variables are not feasible. The executable code must be 
position independent. In order to implement Position 
Independent Code (PIC) without modifying the compiler, 
the module global variables are aggregated into one 
structure. As a result, the module has only one global 
variable for its data. Therefore, runtime linking can be 
done with a few instructions. The base address of the 
global variables is located in the module global offset 
table, which is installed during module initialization. The 
module also has APIs that allow other modules or 
applications to access its internal data or services. The 
APIs are also put into a structure. The address of the API 
structure is linked to the kernel and can be accessed by 
other modules. Thus, updating a module does not affect 
other modules. 
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Figure 1. Module structure.  
 
3.2. Module Updating 
 

The application or the kernel can request a module to 
be updated.  For module updating, the following steps 
occur. The new module to be loaded is read into memory. 
The module links itself to the kernel data and initializes its 
necessary data. The old module is unlinked and can be 
deleted from the kernel space. 

When the module is loaded into the kernel space, the 
initializeModule() function is invoked with a pointer to the 
kernel data. In this function, the location of the module 
data is written to the global offset table, and the API 
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structure is initialized and installed in the kernel data 
section. After initializing the module, other modules and 
applications have access to its APIs.   

Figure 2 represents a system after installing the task 
manager module in the RTOS. The task manager module 
installs its APIs in the core module and stores the pointer 
to the system APIs in its system data field. The task 
manager’s APIs are available to other modules or 
applications. 
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Figure 2. Installing a module to the kernel. 

 
Example 1 [Dynamic Updating of the Scheduler] In this 
example, updating from one scheduler to another is 
illustrated. The update event may occur when a new scheduler 
can manage tasks more efficiently than the current scheduler. 
If the new module is not already in the memory, the first step 
is to allocate memory space and load the module to this 
memory location. This process can be done in the 
background. For this example, we assume that the system is 
currently using a priority-based scheduler to manage the tasks, 
and a request for switching to round robin scheduler is made 
where the round robin scheduler module has already been 
loaded into memory. The module loader invokes the 
initModule() API of the round robin scheduler to initialize 
variables. The round robin initModule() API is responsible 
for creating a ready queue and updating the scheduler entry in 
the system APIs as shown in Figure 3. Finally, initModule() 
initializes the timer with the round robin quantum and 
enables the timer to decrement. After the initialization, the 
scheduler entry in system APIs is changed to the round robin 
scheduler API, and the system is ready to operate using the 
round robin scheduler. Other modules, which use the 

scheduler APIs, do not have to updated. The priority-based 
scheduler can now be deleted from the system. ?  
 
Example 2 [Dynamic Updating of the Loader] When the 
system updates the loader module, it calls the update API of 
the current loader module. The process for the module is 
similar to updating other modules. However, after the 
initModule() function of the new loader module is invoked, 
the new module replaces the old one. The initModule() 
function cannot return back to the old loader since the old 
loader is already unlinked. The return address from the 
initModule() function must be adjusted to the location which 
calls the update API of the old loader module. This is done 
by clearing the stack to ignore the call from the old loader to 
the initModule() function of the new loader. ?  
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Task 
Scheduler 
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Task v. 1 
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0x00202000 
0x00203000 

… 

 
 
 

Module API 
Identifier 

Name Module API 
Address 

Task 
Scheduler 
Synchronizer 
Time 
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Task v. 1 
Round Robin 
Synch v. 1 
Time v. 1 
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0x00200000 
0x0020C000 
0x00202000 
0x00203000 

… 

  
 

Figure 3.  Scheduler module updating. 
 
3.3. API invocations  
 

When data or services of other kernel modules are 
needed, the appropriate API must be invoked. However, 
the module must obtain the location of the system APIs 
from its data section and the location of the target APIs. 
The system APIs are located in the data section of the 
core module. It contains locations of all the modules’ 
APIs. Each module updates its location in the system 
APIs and stores the location of the system APIs in its data 
section. A kernel module can access others’ APIs by 
referring to the system APIs. Accessing the new kernel 
module’s data or services is done the same way as prior to 
the kernel module updating. 
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For example, if the task manager module creates a task 
and invokes the scheduler API to schedule a task, it 
implements the following steps: 

 
System *pSys =  
(System *) pTaskData->pSystem; 
SchedulerMethod *scheduler = 
(SchedulerMethod *) pSys->scheduler;   
scheduler->schedule(pNewTask, 
TASK_READY); 
 
Figure 4 shows our implementation for invoking an API. 
Since the task manager has a pointer to the system APIs, it 
can invoke standard scheduler APIs such as schedule() in 
constant time providing predictability. If the scheduler 
module is updated, it does not affect how the task 
manager invokes the scheduler APIs. This provides 
adaptability and flexibility in the RTOS by use of pointers.  
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 Figure 4. Invoking an API. 
 
3.4. Kernel Structure  
 

In this section, the DRTOS modules are described 
briefly. The DRTOS is written mostly in ANSI C.  The 
kernel also includes assembly code specifically for 
MPC750 processors. The names of the modules, their 
descriptions, and sizes in terms of the number of C lines 
are shown in Table 1.  

 

Table 1. DRTOS modules 

Module Description Size (# of C lines) 

Core 
Initialization of the 
kernel 

528 

Task 
Task creation, 
deletion, 
suspension, query  

468 

Time 
Setting/getting 
system time, task 
delay 

164 

Scheduler 
(priority) 

Fixed priority 
scheduler 

273 

Scheduler 
(round-robin) 

Round robin 
scheduler 

200 

TOTAL 1633 

 
 
4. Experiments and Results 

 
We simu lated an implementation of the DRTOS on a 

System-on-a-Chip (SoC) using Seamless CVE [7]. 
Furthermore, we implemented the DRTOS on an off-the-
shelf hardware using an MBX860 board with a PowerPC 
860 processor. The experimental setups and results are 
explained in the following two sections. 
 
4.1. Simulation results for an SoC 
 

It is likely that the next generation handheld devices 
will support multiple applications such as wireless 
communication and a voice user interface (VUI) running 
on a multiprocessor SoC. In this environment, static 
compilation of the applications and the RTOS may become 
infeasible since the applications frequently change. The 
adaptability, extensibility, and flexibility of the RTOS are 
desirable. 

In this experiment, we simulated such a handheld 
device using Seamless CVE. Initially, the handheld device 
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is running a VUI application. Necessary RTOS modules 
are loaded to support the application. When the user 
switches to a wireless communication application, the 
RTOS must install necessary modules for orthogonal 
frequency division multiplexing (OFDM) transmitter and 
switch to the new application. The block diagram of the 
OFDM transmitter is illustrated in Figure 5 [6]. The 
application is partitioned among four processors 
according to its functions. The first processor handles 
channel initialization, train pulse generation, symbol 
generation, data generation and mapping, and bit-reversal 
for the Inverse Discrete Fourier Transform (IDFT). The 
next processor computes the IDFT. Another processor is 
responsible for normalizing the IDFT. The last processor is 
responsible for normalization and insertion of a guard 
signal. The synchronization, communication, and I/O 
kernel modules are loaded on each processor. Only 
necessary services are installed on each processor. When 
they are installed, the application is ready to run and the 
application switching is complete. 
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Figure 5. Block diagram of the OFDM transmitter. 
 

The hardware setup is shown in Figure 6. The hardware 
includes four MPC750 processors, a memory, a bus arbiter, 
an interrupt controller, and a storage device. The shared 
bus, shared memory architecture is used as the platform 
for our simulation.  A Kernel Management Process (KMP) 
runs on one of the processors. When an application 
switching occurs, the KMP installs necessary kernel 
modules for the application. After the installation, the 
KMP sends interrupt signals to notify each processor to 
execute the new application. Communication and 
synchronization are implemented using shared memory. 

In this experiment, the DRTOS enables the device to 
support a wide range of applications by allowing the 
kernel modules to be dynamically loaded to exactly suit 
the applications. When a kernel module is changed, there 
is no need to reboot the whole system. This provides 
runtime extensibility of the kernel. 
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Figure 6. Experiment setup for the SoC 

simulation. 
 
4.2. Implementation results for MBX860 board 
 

We tested the DRTOS on an MBX860 evaluation 
board. As shown in Figure 7, the board is connected to a 
host machine through a JTAG interface. To validate our 
DRTOS concept, we set up the experiment to switch 
between two schedulers. The application consists of five 
tasks. Three tasks do some basic computation on a fixed 
set of input data and display the resulting output on three 
corresponding graphs on the host machine. The fourth 
task requests the kernel to update the scheduler in the 
DRTOS. Finally, the last task is the idle task and is 
scheduled when no other task is ready. 
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Figure 7. Experimental setup for board 

implementation. 
 

The first scheduler loaded is the priority-based 
scheduler. The switcher routine allocates memory space 
for the priority-based scheduler and returns a pointer to 
the beginning address of the allocated space. Then the 
binary image of the priority-based scheduler module is 
loaded into this memory location. After the scheduler is 
initialized, the five tasks mentioned above are created and 
multitasking is started.  

All of the tasks work in loops. All of them, besides the 
idle task, are suspended for a certain amount of time after 
finishing their job and before going into the next iteration 
of their loop. The three graphics-displaying tasks have 
higher priorities than Task 4, the scheduler-changing task. 



 

6 

We can see from the simulation that when the highest 
priority task finishes its calculation and is suspended, the 
next highest priority task takes control of the CPU and 
starts to display its graphical data. We can also observe 
that a higher priority task, when one becomes ready again, 
preempts the lower priority graphics-displaying task. At 
some point in time, when all of the high priority graphics-
displaying tasks are suspended, Task 4 is scheduled on 
the CPU. Task 4, when it takes control of the CPU the first 
time, calls the switcher routine to allocate memory space 
for the round-robin scheduler, load the round-robin 
scheduler into this memory location, and switches from 
the priority scheduler to the newly downloaded and 
dynamically linked round-robin scheduler. Afterwards, 
Task 4 is suspended until it is needed to change the 
scheduler again.  

After the round-robin scheduler is initialized and starts 
running, graphics-displaying tasks take turns during their 
computation. At this time we can observe that the three 
graphs are updated concurrently depending on the time 
slice of the round-robin scheduler.   

 
5. Conclusion 
 

The resource requirements of current and future 
embedded applications can be met by a dynamic real-time 
operating system where all kernel services can be updated 
at runtime depending on the applications. In this paper, we 
provide a methodology for dynamic loading and linking of 
RTOS kernel modules. This approach enables real-time 
operating systems to support a wide range of applications 
and improves the real-time operating systems’ 
adaptability, extensibility, and flexibility. 

We validated our DRTOS concepts by both 
implementing a subset of the DRTOS for the PowerPC 
architecture (specifically, the MPC860) and by simulating 
the DRTOS on an SoC simulation environment. We can 
update any kernel module at runtime without any 
significant side effects. 

For future work, we will address security issues such as 
keeping kernel space free from malicious users and task 
protection. 
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