

1

Adaptability, Extensibility, and Flexibility in Real-Time Operating Systems

Pramote Kuacharoen, Tankut Akgul, Vincent J. Mooney, and Vijay K. Madisetti
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332

U.S.A.
{pramote, tankut, mooney, vkm}@ece.gatech.edu

Abstract

In this paper, we present a mechanism for runtime
updating of all kernel modules of a highly modular
dynamic real-time operating system. Our approach can
help solve the lack of adaptability, extensibility, and
flexibility of existing real-time operating systems. The
dynamic real-time operating system will efficiently
support a wide range of applications since any kernel
module can be dynamically loaded at runtime to exactly
suit the applications without necessitating a reboot of
the system.

1. Introduction

Existing Real-Time Operating Systems (RTOSs) provide
fixed interfaces and implementations of services and
resources. The RTOS services are provided as a set of
modules or libraries. Often, the RTOS and an application
are compiled together. The services needed for the
application are selected by simply setting flags at the time
of the application build [1]. As a result, this standard
RTOS compilation methodology prevents updating the
application or the RTOS at runtime. However, future
embedded systems are likely to include a multitude of
applications, some subset of which changes every few
months (or possibly every few weeks in some cases).

Even if a static RTOS were to include all possible
services, the RTOS would likely become inefficient and
insufficient for emerging applications, especially when
real-time considerations are included. A static RTOS
cannot efficiently support a wide range of applications
with different service demands. For example, a priority-
based scheduler is suitable for applications where the
deadline of the highest-priority task is the most important.
However, this scheduler does not work well in scheduling
network packets such as video-on-demand and streamed
audio, where quality of service is required. In order to

support these applications, the RTOS must be rewritten,
compiled, and loaded to the device. Fortunately, today’s
embedded systems tend to support applications of one
type, e.g., voice or multimedia. However, tomorrow’s
embedded devices will surely be much more diverse in the
application set to be supported.

In this paper, a totally flexible, easily extensible, and
highly modular Dynamic Real-Time Operating System
(DRTOS) is introduced. Each kernel module can be
changed or integrated to the kernel at runtime. Kernel
services can be specific to each application. The DRTOS
is adaptable, including all parts of the kernel, even the part
responsible for dynamic installation of new kernel
modules! Therefore, the DRTOS can provide efficient and
sufficient services and satisfy any application’s
requirements since any kernel module can be dynamically
loaded to exactly suit the application.

2. Background and Motivation

With the rapid growth of the embedded industry,
applications such as cellular phones and personal digital
assistants require more and more functionality in order to
sell in high volumes. Third generation cellular phones will
also be upgradeable over the air to allow more internal
features to be added without the need for physically going
into a store. To best support new features efficiently, all
RTOS kernel modules must be updateable at runtime.

An operating system, which enables system services to
be defined in an application-specific fashion, offers finer-
grained control over a machine’s resources to an
application through runtime adaptation of the system to
application requirements [2]. The services are efficient in
both functionalities and performance for the application.
These services come with applications and are loaded
when the applications need them. This requires a modular
design of the RTOS. To provide modularity and

2

performance, operating system kernels should have only
minimal embedded functionality [3].

Our primary motivation is to allow all kernel
components to be updated at runtime on a heterogeneous
multiprocessor architecture, which was not addressed in
the previous work [2,3,4]. The approach presented here
can ease RTOS management by omitting a reboot of the
system each time a kernel update occurs. All kernel
components are modular and can be dynamically loaded
and unloaded as needed. For example, a fixed priority-
based scheduler can be updated to an earliest deadline
scheduler, written by the application developer, at runtime
when the application’s requirements change. If a bug fix is
necessary in one of the DRTOS modules or a newer
version module is ready to be integrated to the system,
this can be accomplished without recompilation of the
whole system. For future work, we will address security
issues such as keeping the kernel space free from
malicious users.

3. Methodology

To support adaptability and flexibility in real-time
operating systems, the kernel must be simple to enable
easy modification and allow applications to implement
system mo dules and services. In this system, dynamic
runtime loading and linking are necessary. However, the
methodology used in general-purpose real-time operating
systems does not fully support such dynamic loading and
linking of all kernel modules. A methodology to support
adaptability and flexibility in real-time operating systems is
presented in the following sections, starting with dynamic
instantiation of kernel modules, dynamic update of
modules, and kernel-level API support.

3.1. Kernel Modules

Runtime updating of a real-time operating system
component requires each kernel component to be
designed as a module. Each module has its own text and
data sections. Therefore, switching of one module with
another consists of changing both the text and the data
sections in the kernel space. This requires dynamic linking
of new text and data into the kernel space. The appropriate
modules for supporting the application are integrated into
the RTOS and unneeded ones can be removed from the
RTOS at runtime.

For a modular and reusable design, an object-oriented
kernel provides the application programmer a customizable
operating system [5]. However, to reduce the overhead of
object-oriented programming, we implement the kernel
modules in C. As illustrated in Figure 1, a mo dule consists

of text and data sections. In the data section, there are
module variables and APIs. The module variables and the
APIs are equivalent to class fields and methods in object-
oriented programming.

Since each module can be installed anywhere in the
kernel space, absolute address references to the module’s
variables are not feasible. The executable code must be
position independent. In order to implement Position
Independent Code (PIC) without modifying the compiler,
the module global variables are aggregated into one
structure. As a result, the module has only one global
variable for its data. Therefore, runtime linking can be
done with a few instructions. The base address of the
global variables is located in the module global offset
table, which is installed during module initialization. The
module also has APIs that allow other modules or
applications to access its internal data or services. The
APIs are also put into a structure. The address of the API
structure is linked to the kernel and can be accessed by
other modules. Thus, updating a module does not affect
other modules.

 Kernel Module

Te
xt

Executable code

Module variables

D
at

a

APIs

Figure 1. Module structure.

3.2. Module Updating

The application or the kernel can request a module to
be updated. For module updating, the following steps
occur. The new module to be loaded is read into memory.
The module links itself to the kernel data and initializes its
necessary data. The old module is unlinked and can be
deleted from the kernel space.

When the module is loaded into the kernel space, the
initializeModule() function is invoked with a pointer to the
kernel data. In this function, the location of the module
data is written to the global offset table, and the API

3

structure is initialized and installed in the kernel data
section. After initializing the module, other modules and
applications have access to its APIs.

Figure 2 represents a system after installing the task
manager module in the RTOS. The task manager module
installs its APIs in the core module and stores the pointer
to the system APIs in its system data field. The task
manager’s APIs are available to other modules or
applications.

Core Module

T
ex

t

Executable code

Module variables

System APIs
 Task Manager
 Scheduler

D
at

a

APIs

Task Manager Module
T

ex
t

Executable code

Module variables
System

D
at

a

APIs
createTask

Figure 2. Installing a module to the kernel.

Example 1 [Dynamic Updating of the Scheduler] In this
example, updating from one scheduler to another is
illustrated. The update event may occur when a new scheduler
can manage tasks more efficiently than the current scheduler.
If the new module is not already in the memory, the first step
is to allocate memory space and load the module to this
memory location. This process can be done in the
background. For this example, we assume that the system is
currently using a priority-based scheduler to manage the tasks,
and a request for switching to round robin scheduler is made
where the round robin scheduler module has already been
loaded into memory. The module loader invokes the
initModule() API of the round robin scheduler to initialize
variables. The round robin initModule() API is responsible
for creating a ready queue and updating the scheduler entry in
the system APIs as shown in Figure 3. Finally, initModule()
initializes the timer with the round robin quantum and
enables the timer to decrement. After the initialization, the
scheduler entry in system APIs is changed to the round robin
scheduler API, and the system is ready to operate using the
round robin scheduler. Other modules, which use the

scheduler APIs, do not have to updated. The priority-based
scheduler can now be deleted from the system. ?

Example 2 [Dynamic Updating of the Loader] When the
system updates the loader module, it calls the update API of
the current loader module. The process for the module is
similar to updating other modules. However, after the
initModule() function of the new loader module is invoked,
the new module replaces the old one. The initModule()
function cannot return back to the old loader since the old
loader is already unlinked. The return address from the
initModule() function must be adjusted to the location which
calls the update API of the old loader module. This is done
by clearing the stack to ignore the call from the old loader to
the initModule() function of the new loader. ?

 Module API

Identifier
Name Module API

Address
Task
Scheduler
Synchronizer
Time

…

Task v. 1
Priority-based
Synch v. 1
Time v. 1

…

0x00200000
0x00201000
0x00202000
0x00203000

…

Module API
Identifier

Name Module API
Address

Task
Scheduler
Synchronizer
Time

…

Task v. 1
Round Robin
Synch v. 1
Time v. 1

…

0x00200000
0x0020C000
0x00202000
0x00203000

…

Figure 3. Scheduler module updating.

3.3. API invocations

When data or services of other kernel modules are
needed, the appropriate API must be invoked. However,
the module must obtain the location of the system APIs
from its data section and the location of the target APIs.
The system APIs are located in the data section of the
core module. It contains locations of all the modules’
APIs. Each module updates its location in the system
APIs and stores the location of the system APIs in its data
section. A kernel module can access others’ APIs by
referring to the system APIs. Accessing the new kernel
module’s data or services is done the same way as prior to
the kernel module updating.

4

For example, if the task manager module creates a task
and invokes the scheduler API to schedule a task, it
implements the following steps:

System *pSys =
(System *) pTaskData->pSystem;
SchedulerMethod *scheduler =
(SchedulerMethod *) pSys->scheduler;
scheduler->schedule(pNewTask,
TASK_READY);

Figure 4 shows our implementation for invoking an API.
Since the task manager has a pointer to the system APIs, it
can invoke standard scheduler APIs such as schedule() in
constant time providing predictability. If the scheduler
module is updated, it does not affect how the task
manager invokes the scheduler APIs. This provides
adaptability and flexibility in the RTOS by use of pointers.

Core Module

T
ex

t

Executable code

Module variables

System APIs
 Task Manager
 Scheduler

D
at

a

APIs

Task Manager Module

T
ex

t

Executable code

Module variables
System

D
at

a

APIs
createTask

Scheduler Module

Te
xt

Executable code

Module variables
System

D
at

a

APIs
schedule

 Figure 4. Invoking an API.

3.4. Kernel Structure

In this section, the DRTOS modules are described
briefly. The DRTOS is written mostly in ANSI C. The
kernel also includes assembly code specifically for
MPC750 processors. The names of the modules, their
descriptions, and sizes in terms of the number of C lines
are shown in Table 1.

Table 1. DRTOS modules

Module Description Size (# of C lines)

Core
Initialization of the
kernel

528

Task
Task creation,
deletion,
suspension, query

468

Time
Setting/getting
system time, task
delay

164

Scheduler
(priority)

Fixed priority
scheduler

273

Scheduler
(round-robin)

Round robin
scheduler

200

TOTAL 1633

4. Experiments and Results

We simu lated an implementation of the DRTOS on a

System-on-a-Chip (SoC) using Seamless CVE [7].
Furthermore, we implemented the DRTOS on an off-the-
shelf hardware using an MBX860 board with a PowerPC
860 processor. The experimental setups and results are
explained in the following two sections.

4.1. Simulation results for an SoC

It is likely that the next generation handheld devices
will support multiple applications such as wireless
communication and a voice user interface (VUI) running
on a multiprocessor SoC. In this environment, static
compilation of the applications and the RTOS may become
infeasible since the applications frequently change. The
adaptability, extensibility, and flexibility of the RTOS are
desirable.

In this experiment, we simulated such a handheld
device using Seamless CVE. Initially, the handheld device

5

is running a VUI application. Necessary RTOS modules
are loaded to support the application. When the user
switches to a wireless communication application, the
RTOS must install necessary modules for orthogonal
frequency division multiplexing (OFDM) transmitter and
switch to the new application. The block diagram of the
OFDM transmitter is illustrated in Figure 5 [6]. The
application is partitioned among four processors
according to its functions. The first processor handles
channel initialization, train pulse generation, symbol
generation, data generation and mapping, and bit-reversal
for the Inverse Discrete Fourier Transform (IDFT). The
next processor computes the IDFT. Another processor is
responsible for normalizing the IDFT. The last processor is
responsible for normalization and insertion of a guard
signal. The synchronization, communication, and I/O
kernel modules are loaded on each processor. Only
necessary services are installed on each processor. When
they are installed, the application is ready to run and the
application switching is complete.

Serial to
Parallel

IDFT &
Cyclic
Prefix

X(m) X(n)

Tx

Figure 5. Block diagram of the OFDM transmitter.

The hardware setup is shown in Figure 6. The hardware
includes four MPC750 processors, a memory, a bus arbiter,
an interrupt controller, and a storage device. The shared
bus, shared memory architecture is used as the platform
for our simulation. A Kernel Management Process (KMP)
runs on one of the processors. When an application
switching occurs, the KMP installs necessary kernel
modules for the application. After the installation, the
KMP sends interrupt signals to notify each processor to
execute the new application. Communication and
synchronization are implemented using shared memory.

In this experiment, the DRTOS enables the device to
support a wide range of applications by allowing the
kernel modules to be dynamically loaded to exactly suit
the applications. When a kernel module is changed, there
is no need to reboot the whole system. This provides
runtime extensibility of the kernel.

MPC750

MPC750*
•Dynamic RTOS Services
•Kernel Switching Code

Storage Device

 Memory

MPC750

MPC750

Interrupt

Kernel Modules

Interrupt
Service

Routines

*: Processor Running Kernel Management Process

Figure 6. Experiment setup for the SoC

simulation.

4.2. Implementation results for MBX860 board

We tested the DRTOS on an MBX860 evaluation
board. As shown in Figure 7, the board is connected to a
host machine through a JTAG interface. To validate our
DRTOS concept, we set up the experiment to switch
between two schedulers. The application consists of five
tasks. Three tasks do some basic computation on a fixed
set of input data and display the resulting output on three
corresponding graphs on the host machine. The fourth
task requests the kernel to update the scheduler in the
DRTOS. Finally, the last task is the idle task and is
scheduled when no other task is ready.

MBX 860 JTAG

Interface

Host

Machine

Figure 7. Experimental setup for board

implementation.

The first scheduler loaded is the priority-based
scheduler. The switcher routine allocates memory space
for the priority-based scheduler and returns a pointer to
the beginning address of the allocated space. Then the
binary image of the priority-based scheduler module is
loaded into this memory location. After the scheduler is
initialized, the five tasks mentioned above are created and
multitasking is started.

All of the tasks work in loops. All of them, besides the
idle task, are suspended for a certain amount of time after
finishing their job and before going into the next iteration
of their loop. The three graphics-displaying tasks have
higher priorities than Task 4, the scheduler-changing task.

6

We can see from the simulation that when the highest
priority task finishes its calculation and is suspended, the
next highest priority task takes control of the CPU and
starts to display its graphical data. We can also observe
that a higher priority task, when one becomes ready again,
preempts the lower priority graphics-displaying task. At
some point in time, when all of the high priority graphics-
displaying tasks are suspended, Task 4 is scheduled on
the CPU. Task 4, when it takes control of the CPU the first
time, calls the switcher routine to allocate memory space
for the round-robin scheduler, load the round-robin
scheduler into this memory location, and switches from
the priority scheduler to the newly downloaded and
dynamically linked round-robin scheduler. Afterwards,
Task 4 is suspended until it is needed to change the
scheduler again.

After the round-robin scheduler is initialized and starts
running, graphics-displaying tasks take turns during their
computation. At this time we can observe that the three
graphs are updated concurrently depending on the time
slice of the round-robin scheduler.

5. Conclusion

The resource requirements of current and future
embedded applications can be met by a dynamic real-time
operating system where all kernel services can be updated
at runtime depending on the applications. In this paper, we
provide a methodology for dynamic loading and linking of
RTOS kernel modules. This approach enables real-time
operating systems to support a wide range of applications
and improves the real-time operating systems’
adaptability, extensibility, and flexibility.

We validated our DRTOS concepts by both
implementing a subset of the DRTOS for the PowerPC
architecture (specifically, the MPC860) and by simulating
the DRTOS on an SoC simulation environment. We can
update any kernel module at runtime without any
significant side effects.

For future work, we will address security issues such as
keeping kernel space free from malicious users and task
protection.

6. Acknowledgements

This research is funded by the State of Georgia under
the Yamacraw initiative [8] and by NSF under INT-
9973120, CCR-9984808 and CCR-0082164.

We also would like to acknowledge software donations
from Mentor Graphics and Synopsys Inc. [9] as well as
hardware donations from Sun Microsystems and Intel
Corporation.

7. References

[1] D. Stepner, N. Rajan, and D. Hui, “Embedded application

design using a real-time OS,” in Proceedings of the Thirty-
sixth Design Automation Conference, 1999, pp. 151-156.

[2] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M.
Fiuczynski, D. Becker, S. Eggers, and C. Chambers,
“Extensibility, safety, and perfermance in the SPIN
operating system,” in Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, 1995, pp.
267-284.

[3] D. R. Engler, M. F. Kaashoek, and J. W. O’Toole Jr., “The
operating system kernel as a secure programmable
machine,” Operating Systems Review, Jan. 1995, pp. 78-82.

[4] V. Yodaiken, “The RTLinux manifesto,” in Proceedings of
the Fifth Linux Expo, 1999.

[5] F. Colaco and F. Cardoso, “Flying Object: a modular real-
time object operating system,” in Proceedings of the
eleventh IEEE NPSS on Real Time, 1999, pp. 543-546.

[6] K. F. Lee and D. B. Williams, “A space-frequency
transmitter diversity technique of OFDM systems,” in
Proceedings IEEE GLOBECOM, 2000, vol. 3, pp. 1473-
1477.

[7] Seamless CVE, http://www.mentor.com/seamless

[8] Yamacraw, http://www.yamacraw.org

[9] Synopsys Inc., http://www.synopsys.com

