
A Practical Customer Privacy Protection on Shared Servers

Pramote Kuacharoen
School of Applied Statistics

National Institute of Development Administration
118 Serithai Rd. Bangkapi, Bangkok 10240 Thailand

pramote@as.nida.ac.th

Abstract—Customer privacy protection is very important in an
e-commerce site. Without such protection, the customers may
not be willing to provide personal information or conduct
business at the site. Therefore, the merchant should protect
its customer information in order to gain customer trust. In
this paper, an approach for protecting customer information
on shared servers is presented. The proposed method provides
customer privacy by encrypting the customer information at
the client machine and allows the key to be shared between the
customer and the merchant. The encrypted customer
information is sent and stored on the shared server. Therefore,
attackers cannot access the customer information while the
merchant can easily obtain such information. To make it
practical, the technique is implemented in software and is
transparent to the customer. Furthermore, this solution to
protect customer privacy does not significantly increase the
cost to develop and deploy the system.

Keywords-privacy; security

I. INTRODUCTION

A shared web hosting service or a web hosting service
allows many websites to reside on one web server connected
to the Internet. Sharing a web server has an economical
advantage; the cost for maintenance is shared among
subscribers. It is an alternative to a dedicated server where
the server is not shared and can be located on the premises or
at a hosting company which provides colocation hosting
service. However, a shared server also has a disadvantage
that information security is more difficult to achieve. As a
result, the customer privacy may be compromised.

On a shared server, a common pool of server resources
such as RAM, CPU, and server programs is shared by many
websites. Server programs such as the web server and the
database server can also be shared among the users. The
shared host may run only a single instance of each program.
Although the user has private storage space and the user
rights are provided by the server’s operating system, a rogue
user has a greater chance to compromise the server than an
attacker who does not have access to the server. The user
may also be a database user. The database administrator
should not allow users to be able to access another user’s
data. Another security concern is a rogue administrator of
the web hosting company. The system administrator has a
superuser or root privilege to view files in the system.
Usually, the username and password which are used to
access the database are in the configuration file or hardcoded
in the application as illustrated in Fig. 1. This information
can be easily viewed by the system administrator or an

attacker who has gained access to the web server. Using the
database username and password, the data in the database
can be obtained.

Figure 1. PHP code to open a connection to a MySQL server.

After the database has been compromised, an attack can

obtain the customer’s personal information such as name,
Social Security number, or credit card number. The attacker
can perform identity theft by using the stolen information to
commit fraud or other crimes. Identity theft is a serious
problem. It is prevalent in many countries around the world
affecting economies. In order to fight against identity theft,
consumer privacy must be protected.

In this paper, a practical customer privacy protection on a
shared server is presented. The objective of the proposed
approach is to protect the privacy of a customer who
provides personal information to or makes a purchase from a
website which is hosted on a shared server. To make it
practical, the technique must be a software solution and must
be transparent to the customer. Another important
requirement is that the solution must not significantly
increase the cost to develop and deploy the system.

This paper consists of five sections. The next section,
Section II, describes background and related work in the area
of privacy, anonymity, and vulnerability. Section III
presents a security design which provides a privacy
protection. Section IV describes the implementation of a
website which ensures the customer privacy protection.
Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

The right to privacy is a part of many countries’ privacy
laws. In US, the right to privacy has been amended in the
Bill of Rights. The California Security Breach Notification
Law forces government agencies, companies, and nonprofit
organizations conducting business in California to notify
California customers when personally identifiable
information has been compromised [1]. In Europe, the right
to privacy is a highly developed area of law. All member
states of the European Union (EU) must abide by this law. It
enforces the protection of individuals with regard to the
processing of personal data and on the free movement of

such data. This protection covers the Internet privacy. In
accordance with the principle of freedom of expression and
the right to privacy, use of anonymity is legal. Users should
be able to access data and browse anonymously so that their
personal information cannot be recorded and used without
their permission.

To ensure a high level of privacy, Internet anonymity can
be employed so that when an individual communicates
through the Internet, any third parties will not be able to link
the Internet activities to personally identifiable information
of the Internet user. The privacy-enhancing technology
exists; however, it is not widely adopted. For instance,
Onion routing provides real-time bidirectional anonymous
connections that are resistant to both eavesdropping and
traffic analysis [2]. Onion routing consists of a fixed
infrastructure of onion routers. Even though some routers in
the onion routing network may have been compromised, the
connection between the sender and the receiver remains
anonymous. The anonymity is accomplished by
implementing the onion routing protocol at the application
layer. When a sender wants to sends a message to a receiver,
the sender chooses a random sequence of routers. The
sender constructs the message and routing information as a
payload. Routing information for each link is encrypted with
the router’s public key. Therefore, each router learns only
the identity of the next router. For example, when a sender
A wants to send a message M to a receiver B, the sender A
selects onion routers R1, R2, R3, and R4 as shown in Fig. 2.
Router R3 is compromised.

Figure 2. Sending a message through the onion network.

The sender A constructs the payload:

C = E(PUR1, K1|R2)|E(K1, E(PUR2, K2|R3)|E(K2, E(PUR3,
K3|R4)|E(K3, E(PUR4, K4|B)|E(K4, E(PUb, M)))))

When the message is received by an onion router, it
decrypts the message to obtain the session key and the next
destination. The onion router uses the session key to decrypt
the rest of the message and sends it to the next destination.
In this example, R2 sends R3 the message E(PUR3,
K3|R4)|E(K3, E(PUR4, K4|B)|E(K4, E(PUb, M))). R3 only
knows that it receives the data from R2 and will forward the
message E(PUR4, K4|B)|E(K4, E(PUb, M)) to R4. If R3 is
controlled by an attacker, the attacker can only learn limited
information.

Tor is a second-generation Onion routing network. It is
designed for low-latency anonymous Internet
communications. It also addresses limitations in the original
design by adding perfect forward secrecy, congestion
control, directory servers, integrity checking, configurable
exit policies, and a practical design for location-hidden
services via rendezvous points [3]. For practical purposes,
such a high level of privacy may not be necessary. A level
of privacy through controlled disclosure of personal
information may be adequate. The revelation of IP
addresses, non-personally-identifiable profiling, and the like
might be acceptable trade-offs for the convenience that the
user could otherwise lose using a high level of privacy.

A dynamic web page usually loads content from a
database for each individual viewing. It provides the user
with the ability to personalize the web page. The website
takes parameters from the web user and makes SQL
statement to perform queries or update the information to the
database. Since the input comes from the user, the attacker
may be able to exploit a security vulnerability by sending the
input crafted such a way that when it cause the database to
process invalid data. This exploitation technique is called
SQL injection. Using SQL injection, the attacker may be
able to obtain other user information. Consider the sign-in
web page where the user supplies username and password as
“abcd” and “1234,” respectively. After the user clicks the
submit button, the following SQL query is generated:

SELECT * FROM user_table WHERE user_id = ‘abcd’
AND password = ‘1234’

If the user enters “’ OR 1=1--” as the password, the SQL
query will become:

SELECT * FROM user_table where user_id = ‘abcd’ AND
password = ‘’ OR 1=1--’

The generated SQL query when executed will return

information of the username “abcd” including the password.
The defense against this kind of attack is to validate the user
input to ensure that it will not cause an unintended SQL
statement and carefully review code that executes
constructed SQL commands [4][5]. SQL Injection
vulnerability detections have been proposed [6][7].
However, the threats still exists. To further enhance security,
the user data should be stored as encrypted. Without the
knowledge of the key, the attacker will have difficult time
deciphering the information in the case of the SQL injection
attack succeeds. Hence, the customer privacy is protected.

III. SECURITY DESIGN

In this section, the security design to protect customer
privacy will be discussed. The design includes storing
customer password, authenticate the customer, encrypting
and decrypting customer information, and handling
transactions.

A. Storing Customer Password

In a shared web hosting service, web applications
authenticate a customer by comparing the username and
password combination that the customer entered to the value
in the database table containing customer information.
Storing actual customer passwords inherits a prominent risk.
It might be possible for an attacker to be able to inject SQL
queries to the application to list the usernames and
passwords or to obtain them directly from the database
server. If an attacker gains access to the password storage,
all passwords will be compromised. Therefore, the customer
passwords should not be stored as clear text. Instead, a
hashed form of the passwords should be stored.

When a customer registers to the website, the customer
chooses a username and a password. If the username is
unique, the application chooses a random number which is
called salt [8]. The application then sends username, salt,
and the hash of the combination of the salt and the password
to the server. Since the server does not store the actual
passwords as clear text in the database, the usernames and
the passwords cannot be revealed if the database is
compromised or the SQL injection is accomplished. With
the use of salt, the attacker cannot efficiently attempt to
crack the password database. The attacker has to search for
each and every user’s password which can potentially be an
expensive operation. This might dissuade the attacker from
making the attempt to perform a brute force attack.

B. Authenticating the Customer

When the customer logs in, a username and a password
are entered. The username is sent to the server. If the
username exists, the corresponding salt and a nonce are sent
back to the browser. If the customer does not exist, the
server sends a random salt and a nonce. The system will not
reveal whether or not a customer exists. At the client
machine, the hash of the combination of the salt and the
password is generated. Then, the resulting hash value is
concatenated with the nonce. The response is generated by
hashing the previous value. The response is sent to the
server. The server computes the hash value of the salted
password and the nonce. The server verifies if the
calculated value matches the received value. The customer
is authenticated upon a successful verification. The
challenge-response authentication protocol is illustrated in
Fig. 3.

Figure 3. Challenge-response authentication protocol.

C. Encrypting Customer Information

The web applications may store the customer
information such as name, address, preferences, and credit
card information. To provide security and privacy, the
customer information must be encrypted. However, this
information should be easily revealed to the customer and
the merchant. Certain information can be used as the
personalized greeting upon the user logins while certain
information such as name and shipping address must be
known to the merchant in order to provide services.

The secret key is randomly generated for each customer.
This secret key is used to encrypt and decrypt the user
information. Therefore, the secret key must be known to
both customer and merchant. However, the secret key must
be protected. Since the customer and the merchant do not
share any secret, the secret key must be separately encrypted
for the customer and merchant. For the customer, the
customer’s secret key is derived from the customer
password using password-based cryptography standard [9].
This provides convenience for the customer since the
customer has to enter a password when logging into the
website. The customer does not need to remember the
customer’s secret key. The merchant must also be able to
obtain the secret key. This can be accomplished by
encrypting the secret key using the merchant’s public key as
shown in Fig. 4. The merchant can obtain the secret key by
decrypting it using the corresponding private key.

PBE

Encrypt

Password

Encrypted
Secret Key for

Customer

Customer’s Secret Key

Encrypt

Merchant’s Public Key

Encrypted
Secret Key for

Merchant

Secret Key

Figure 4. Generating the encrypted secret keys for the user and merchant.

When the customer enters the information, the customer’s

secret key is generated using the customer’s password. The
message digest of the information is created using a
cryptographic hash algorithm. If the information is
modified, the message digest is most likely to be different.
The integrity of the information can be preserved if the
message digest is stored securely. The secret key is used to
encrypt the customer information and its message digest
using a symmetric cryptographic algorithm such as
AES [10] at the client machine. The encrypted customer

information is sent to the server along with the encrypted
secret keys. Since the server stores the encrypted customer
information, this information is protected.

D. Decrypting Customer Information

After the customer has been authenticated, the personal
information is decrypted at the client web browser. Web
pages can be personalized based on the user profile. For
example, a personalized greeting can be shown upon the
successful login. The encrypted customer information
together with the customer’s encrypted secret key are sent
from the server. At the client, a customer’s secret key is
generated using the user password. The customer’s secret
key is then used to decrypt the secret key. After obtaining
the secret key, it is then used to decrypt the received data to
obtain the customer information. Fig. 5 shows the process
of decrypting customer information at the client machine.

Figure 5. Decrypting customer information at the client machine.

The process of decrypting the customer information for

the merchant is slightly different. As illustrated in Fig. 6,
the merchant can use the private key to decrypt the
encrypted secret key and use the secret key to decrypt the
customer information.

Figure 6. Decrypting customer information at the merchant’s machine.

E. Handling Transactions

In a typical e-commerce site, the customer browses the
site for goods and services, and makes a purchase. The
order information is sent to the server. The merchant
processes the order. To ensure that the order information is
confidential, it must be encrypted. In this approach, when a
transaction is made, the transaction information is encrypted
using a secret key at the client side. The encrypted
transaction information is sent to store on the server. Since
the merchant can obtain the secret key, the merchant can

reveal the order information by decrypting it with the secret
key and process the order accordingly.

IV. IMPLEMENTATION

This section describes the implementation of a website
hosted on a shared web server while protecting the customer
privacy.

A. Architecture

As illustrated in Fig. 7, the architecture consists of the
customer machines, the shared web server, and the merchant
machine. The customer communicates with the shared web
server securely through a HTTPS [11] connection. The
transmitted data is protected against eavesdropping during
transit. The customer information and transaction data are
encrypted at the client machine and stored at the shared web
server. Therefore, the customer information is securely
stored. The merchant needs to synchronize transactions with
the shared web server. The transactions are processed at the
merchant’s machine.

Internet

Customer

Customer

Merchant

Shared Web Server

Figure 7. Architecture of the implementation.

B. Web Application

To provide privacy and security, the proposal
implementation extensively uses Java applet and Java
Script. The Java applet provides the functionality for
encryption and decryption. JavaScript provides dynamic
web presentation. The web page consists of two main
components, namely, the crypto applet and an inline frame
or iframe. The crypto applet is not visible to the customer.
The contents are displayed in the iframe.

Java Cryptography Architecture (JCA) for Java Platform
Standard Edition 6 [12] is used to implement the crypto
applet. Password-based encryption provides a facility to
convert the customer password to a secret key. AES is used
for symmetric operations such as encryption and decryption.
However, RSA [13] is used for asymmetric operations.

Fig. 8 shows the communication between the crypto
applet and JavaScript. When the content in iframe is
loaded, the encrypted data is passed to the crypto applet via
JavaScript. The JavaScript obtains the decrypted data and

modifies html elements accordingly and the content of the
page is displayed in the iframe.

Figure 8. The process of displaying the web page.

By default the size of an iframe does not change after it

is created. When the content is larger than the iframe,
scrollbars will appear creating multiple scrollbars. To
eliminate multiple scrollbars, the iframe may be
dynamically resized based on its content size which leaves
only the standard browser scrollbars. Fig. 9 shows the
JavaScript function which can be used to dynamically resize
an iframe by obtaining the size of content.

Figure 9. JavaScript for dynamically change the size of an iframe.

When the customer submits information, the information

is passed to the crypto applet for encryption and the
encrypted information is then sent to the server. This can be
accomplished by using onClick or onSubmit events in
JavaScript. When the customer clicks a link or a button to
submit information, a JavaScript function is called to
encrypt the information and send the encrypted information
to the server.

V. CONCLUSION

Customer privacy can be protected so that even the
customer information is stored on a shared server. In this
paper, a methodology for ensuring the privacy of the
customer is presented. This approach provides a practical
means and uses existing technologies in such a way that it is
transparent to the customer. The customer information is
encrypted at the customer’s machine and the encrypted
customer information is sent to be stored at the shared server.
The merchant can synchronize the data with the shared
server and decrypt the encrypted customer information at a
secure facility. Therefore, customer privacy is guaranteed.

The approach was implemented and verified. The crypto
applet was written using Java Platform Standard Edition 6.

REFERENCES
[1] Security Breach Notice - Civil Code sections 1798.29, 1798.82, and

1798.84, California Office of Privacy Protection.

[2] P. F. Syverson et al., “Anonymous Connections and Onion Routing,”
in Proc. 18th Ann. Symp. Security and Privacy, IEEE CS Press, May
1997, pp. 44-54.

[3] R. Dingledine et al., “Tor: The Second-Generation Onion Router,” in
Proc. 13th USENIX Security Symp., Aug. 2004, pp. 303-320.

[4] K. Amirtahmasebi et al., “A survey of SQL injection defense
mechanisms,” Int. Conf. for Internet Technology and Secured Trans.,
ICITST 2009, Nov. 2009, pp.1-8.

[5] R. Ezumalai and G. Aghila, “Combinatorial Approach for Preventing
SQL Injection Attacks,” IEEE Int. Advance Computing Conf., 2009.
IACC 2009, Mar. 2009, pp.1212-1217.

[6] M. Junjin, “An Approach for SQL Injection Vulnerability Detection,”
6th Int. Conf. Inform. Technology: New Generations, ITNG '09, Apr.
2009, pp.1411-1414.

[7] N. Antunes and M. Vieira, “Comparing the Effectiveness of
Penetration Testing and Static Code Analysis on the Detection of
SQL Injection Vulnerabilities in Web Services,” 15th IEEE Pacific
Rim Int. Symp. Dependable Computing, 2009, PRDC '09, Nov. 2009,
pp. 301-306.

[8] C. Kaufman et al., Network Security: Private Communication in a
Public World, 2nd ed. Upper Saddle River, NJ: Prentice Hall PTR,
2002.

[9] Password-Based Cryptography Standard, PKCS #5 v2.0, Mar. 1999.

[10] U.S. Department of Commerce/National Institute of Standards and
Technology (NIST), Advanced Encryption Standard (AES), FIPS PUB
197, 2001.

[11] E. Rescorla, HTTP Over TLS, IETF RFC 2818, May 2000, [Online].
Available: http://www.ietf.org/rfc/rfc2818.txt

[12] Java Cryptography Archtecture (JCA) Reference Guide for Java
Platform Standard Edition 6, Oracle Corperation.

[13] RSA Cryptography Standard, PKCS #1 v2.1, June 2002.

