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Abstract 

Many real-time applications require a high-resolution 
time tick in order to work properly.  However, supporting 
a high-resolution time tick imposes a very high overhead 
on the system.  In addition, such systems may need to 
change scheduling discipline from time to time to satisfy 
some user requirements such as Quality of Service (QoS).  
The dynamic changing of the scheduling discipline is usu-
ally associated with delays during which some deadlines 
might be missed.  

 In this paper, we present a configurable hardware 
scheduler architecture which minimizes the processor 
time wasted by the scheduler and time-tick processing.  
The hardware scheduler is flexible and provides three 
scheduling disciplines: priority-based, rate monotonic 
and earliest deadline first.  The scheduler in hardware 
also provides accurate timing.  The scheduling mode can 
be changed at runtime, providing support for a wide 
range of applications on the same device.  The hardware 
scheduler is provided in the form of an Intellectual Prop-
erty (IP) block that can be customized according to the 
designer’s input, to suite a certain application, by a tool 
we have developed. 
 
Keywords: configurable hardware scheduler, hardware 
scheduler, real-time systems, real-time operating system, 
scheduling algorithm.   
 

1. Introduction 
A Real-Time Operating System (RTOS) allows real-

time applications to be designed and expanded easily.  
However, the RTOS introduces overhead, which may 
prevent some real-time systems, such as high-speed 
packet switches, from working efficiently.  As a result, 
deadlines may be missed.  The overhead can be reduced 
by migrating kernel services such as scheduling, time tick 
(a periodic interrupt to keep track of time during which 
the scheduler makes a decision) processing [7], and inter-
rupt handling to hardware.  This will significantly im-

prove the response time and the interrupt latency, provide 
accurate timing, and increase the CPU utilization. 

An implementation of a hardware scheduler usually 
can support only one scheduling algorithm.  Conse-
quently, the hardware can support a narrow range of ap-
plications, which work well under the same scheduling 
algorithm.  Unlike software components, a hardware unit 
is less flexible and more difficult to modify after imple-
mentation.  As a result, hardware solutions are frequently 
avoided.  However, if the hardware scheduler is configur-
able to support several scheduling algorithms, then the 
hardware solutions become more flexible. 

Future embedded devices will support a wide range of 
applications.  The hardware scheduler may need to be 
reconfigured at the time of application switching.  For 
example, suppose the current application on a handheld 
device is running under a priority-based scheduling algo-
rithm and suppose that the user presses a button to switch 
to another application, which works well under an Earli-
est-Deadline-First (EDF) algorithm.  In order to support 
the new application efficiently, the hardware scheduler 
will be reconfigured from the priority-based mode to the 
EDF mode.  Furthermore, different classes of applications 
will have different numbers of tasks in the system.  Once 
the hardware scheduler is fabricated or configured into a 
Field Programmable Gate Array (FPGA), the maximum 
number of tasks is fixed.  Therefore, the number of tasks 
must be specified for the application class before the 
hardware is built.  However, the operations of the hard-
ware scheduler should be independent of the number of 
tasks.  Scalability of the hardware scheduler can be ac-
complished by implementing fixed-cycle operations.  
Each operation requires a fixed number of cycles.  The 
ready queue architecture must be scalable.  When the 
ready task is inserted to the ready queue, it must be sorted 
in a constant time.  

Some FPGA vendors have recently released recon-
figurable logic with processors such as PowerPC [13] and 
ARM [16].  With chips available containing both recon-
figurable logic and processor(s) together on one die, the 
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hardware scheduler can be easily configured.  Further-
more, with a runtime support environment for reconfigur-
able systems, any scheduling algorithm or any RTOS 
component implemented in hardware can be downloaded 
and reconfigured at runtime.  This will enable the hard-
ware solution to be as flexible as the software solution; 
for example, an existing part, the Xilinx XC3000 is recon-
figurable in 1.5 ms, and future FPGA products promise to 
be reconfigurable in much less time than this [12]. 

We implement a configurable hardware scheduler in 
the Verilog Hardware Description Language (HDL) and 
an RTOS in C.  Our implementation is scalable.  We mi-
grated the software scheduler and the time tick back-
ground processing to the hardware.  Therefore, the soft-
ware overhead from these services is eliminated. 

The paper consists of seven sections.  The next section, 
Section 2, describes related work in the area of scheduling 
algorithms implemented in hardware.  In the third and the 
fourth sections, the configurable hardware scheduler ar-
chitecture and software support are presented.  In the fifth 
section, we discuss automatic customization of the hard-
ware scheduler.  In the sixth section, experiments and 
results are discussed.  Finally, the seventh section con-
cludes the paper. 

2. Related work 
Several previous papers deal with scheduling algo-

rithms implemented in hardware.  Most of them are in the 
field of packet scheduling in real-time net-
works [1], [2], [8].  Scheduling in such systems is based 
on priorities.  Therefore, a key aspect is to implement 
priority queues.  Many hardware architectures for the 
queues have been proposed: binary tree comparators, 
FIFO queues plus a priority encoder, and a systolic array 
priority queue [1].  Most of the hardware proposed ad-
dresses the implementation of only one scheduling algo-
rithm (e.g., Earliest Deadline First) [8].  

In the field of real-time processing, there have been 
few proposals of hardware implementations.  In the 
Spring kernel project [3], [10], a coprocessor was built to 
enhance the multiprocessing scheduling [9].  This coproc-
essor was able to perform feasibility checks and calculate 
a complete feasible schedule.  FASTHARD [4] and 
FASTCHART [5] are two approaches to implement a 
hardware kernel for single or multiprocessor systems.  
The FASTCHART approach used a special purpose CPU 
to execute the scheduling algorithm running in parallel to 
the main CPU.  In FASTHARD, the author implemented 
custom hardware in an FPGA to perform the functional-
ities of the priority scheduler [11].   

The previous research on the hardware implementation 
of real-time schedulers focused only on implementing 
only one scheduling algorithm, thus making them ineffi-

cient and not suitable for systems where the required 
scheduling discipline changes during runtime.  We, on the 
other hand, introduce a configurable scheduler that sup-
ports three scheduling disciplines.  The scheduler can 
switch from one scheduling discipline to another on the 
fly during runtime to adapt to changes in the system.  Our 
hardware scheduler was designed to support multiple 
scheduling disciplines using minimum area overhead.  
The implemented scheduling disciplines share the same 
hardware components and use the maximum amount of 
common logic and minimum amount of multiplexers to 
select a scheduling discipline.  Our implementation is 
entirely different from having three independent hardware 
schedulers running in parallel. 

3. Configurable Scheduler Hardware 
A programmable hardware system is designed to han-

dle the scheduling of tasks in complex systems.  The goal 
of the hardware design is to minimize the processor time 
wasted by the scheduler and by interrupt handling.  His-
torically, designers have avoided hardware solutions be-
cause they have been considered to be inflexible and hard 
to modify after implementation in contrast to software 
solutions.  However, with recent FPGA technology, this is 
no longer the case, with hardware reconfigurable in 
1.5 ms and less (e.g., hundred of microseconds) [12].  
Therefore, in this paper we take advantage of advances in 
FPGA technology by placing part of an RTOS in hard-
ware, reducing, for example, scheduling and time-tick 
processing by thousands of assembly instructions (execut-
ing in tens of thousands of clock cycles if there are cache 
misses) for a system with 50 tasks. 

The hardware scheduler provides three different types 
of scheduling algorithms: Priority (PI), Earliest Deadline 
First (EDF), and Rate Monotonic (RM).  Also, the hard-
ware scheduler supports preemption at the scheduler level 
and at the process level.  The hardware scheduler supports 
up to eight levels of interrupts and provides accurate tim-
ing.  The hardware was designed to minimize the proces-
sor overhead while maintaining flexibility and extensibil-
ity.  In the following section, we will describe the hard-
ware scheduler architecture, commands and interfacing. 

3.1. Architecture 
The proposed architecture for the hardware scheduler 

is shown in Figure 1.  The main components of the sched-
uler are: 

•  The Sleep Queue (SQ), 
•  The Priority Queue (PQ), 
•  The Task Table, 
•  The Interrupt Controller and 
•  The Control Unit 

which will be described in the following sections. 
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Figure 1. The configurable hardware scheduler 
micro-architecture. 

3.1.1. Priority Queue (PQ) 

The priority queue is a sorted queue used to store the 
active tasks in a sorted order (ready queue).  The queue 
entry is shown in Figure 2.  The REG field is a 32-bit 
register that is used to hold either the priority in the case 
of a priority-based scheduler or the period in the case of 
an RM scheduler.  The counter field holds either the pe-
riod for RM or priority-based schedulers, or the time to 
the deadline for an EDF scheduler.  The queue can be 
sorted according to either the REG field in the priority-
based or RM scheduler mode or the counter field in EDF 
scheduler mode.  

ID REG Counter  
Figure 2. The PQ entry format. 

We are using a priority queue very similar to the prior-
ity queue described in [8].  When a task is inserted, the 
queue automatically re-orders itself.  Figure 3 shows the 
architecture of the basic cell of the queue.   

REG + Counter

MUX

Data from
the left cell

Data from
the right cell

ControlComparator

Comparison
results

Comparison results
from the right block

New
data  

Figure 3. The PQ cell architecture. 

Each cell consists of a storage element, a multiplexer, 
a comparator and control logic.  During the en-queue op-
eration, the new entry is broadcast to all the cells.  Each 
cell makes a local decision as to what action to take, with 
only one of the cells latching the new entry.  The others 
will either keep their current entry or latch the right 
neighbor’s entry.  The net effect is to have the new entry 
force all entries with lower priority to shift one cell to the 
left, while the new entry places itself to the left of the 
entries with higher and equal priority.  A de-queue opera-
tion shifts all entries one cell to the right.  The insertion 
and the ordering process takes only one clock cycle in all 
cases [8].   

3.1.2. Sleep Queue (SQ) 

The sleep queue is used to hold the sleeping tasks, ei-
ther by issuing the SLEEP or YIELD commands.  The 
sleep queue uses an architecture similar to that of the PQ.  
However, the SQ entries are sorted according to their 
sleep time, specified by the SLEEP command or the re-
maining time to the end of the period when the YIELD 
command is issued.  Figure 4 shows the data format of the 
SQ entry. 

ID Counter  
Figure 4. The SQ entry format. 

3.1.3. Task Table 

The Task Table is a lookup table indexed by the task 
ID.  The format of the entry is shown in Figure 5: the PRI, 
Period, and WCET fields are used to hold the task prior-
ity, period, and worst-case execution time, respectively.  
The TYPE field is used to hold the task type: periodic or 
aperiodic.  The PRE field indicates if the task can be pre-
empted by other tasks.  The STATUS field holds the task 
status: active, suspended, or deleted.  Every time a task is 
activated, the scheduler fetches the task information from 
the task table. 

PRI Period WCET TYPE PRE STATUS  
Figure 5. The task table entry format. 

3.1.4. Interrupt Controller 

This module is used to handle external interrupts.  The 
module supports up to eight interrupt levels.  Each inter-
rupt can be assigned to a task to handle the associated 
interrupt level.  Each interrupt can be configured to be 
either fast interrupt (the interrupt handling task will run 
right away by preempting the current task) or slow inter-
rupts (the handling task will be inserted to the PQ). 
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3.1.5. Control Unit 

The control unit is used to interface the hardware 
scheduler to the external host.  The control unit accepts a 
command, decodes the command and generates proper 
control signals to the rest of the hardware to execute the 
command. 

3.2. Hardware Scheduler Commands 
The hardware scheduler implements the time-tick han-

dling and the execution of the chosen scheduling algo-
rithm, while the context switching is done in software.  
The hardware scheduler has a set of commands to allow 
the software portion to configure the hardware and to per-
form operations.  The commands are issued through a 
memory mapped I/O port, which can be done in one or 
two clock cycles depending on the size of the command 
word.  For example, since the SLEEP command 
uses 32 bits for the sleep time, it uses two words (64 bits) 
overall and thus takes two clock cycles to execute.  The 
SSLEEP (Short SLEEP) command, on the other hand, 
uses 22 bits for the sleep time and can fit the overall 
command in 32 bits; thus, SSLEEP can execute in one 
clock cycle.  Table 1 lists the commands that can be exe-
cuted by the hardware scheduler. 

Table 1. Hardware Scheduler Commands. 
 Command # of Cycles 

STOP 1 
RUN 1 Scheduler Related 
CONFIGURE 1 
CREATE Task 1 
MODIFY Task 2 
SLEEP 2 
SSLEEP 1 
YIELD 1 
SUSPEND 1 
RESUME 1 

Task Related 

DELETE 1 
 

These commands are standard RTOS task crea-
tion/deletion and scheduling APIs.  The STOP, RUN and 
CONFIGURE commands are used for disabling, enabling 
and configuring the hardware scheduler.  The CREATE 
command creates a new task.  The task’s parameters (e.g., 
task priority and task worst-case execution time) can be 
modified using the MODIFY command.  To delay a task, 
SLEEP or SSLEEP can be used.  The YIELD command 
will insert a task to the SQ for the remaining time in the 
period.  The SUSPEND command suspends a task while 
the RESUME command resumes a suspended task.  A 
task can be deleted using the DELETE command. 

Example 1: Consider a 32-bit system that utilizes the 
hardware scheduler which is configured to work in a prior-
ity scheduling mode and supports up to 64 tasks.  The 
time tick resolution for schedule is set to 10 µs.  To create 

a task, the real-time operating system must issue the 
CREATE command which requires the task ID and the 
task priority.  The CREATE command is a 32 bit command 
where the task id and the task priority occupy 6 bits each.  
Therefore, the CREATE command can be issued in one 
cycle.  One of the tasks is a periodic task which reads an 
input every 45 s.  The task needs to idle (sleep) for 45 s 
after reading each input value.  In order to idle, the task 
calls an API function that utilizes the SLEEP and SSLEEP 
commands.  Since 45 s are equivalent 4.5 million ticks 
which need more than 22 bits to be represented, the API 
call uses the SLEEP command which takes two cycles to 
execute.  � 

3.3. Hardware Scheduler Interfacing 
The hardware is designed to be able to interface easily 

with any microprocessor.  The hardware scheduler can be 
connected to a bus to act as a memory mapped port, or it 
may be connected to the processor as a co-processor.  In 
addition, if the processor (such as the StarCore SC140 
DSP core [14]) supports instruction-set accelerators, the 
hardware scheduler can be used to extend the processor 
instruction-set to manage the system processes with cus-
tomized assembly instructions such as the YIELD and 
RESUME commands explained in Section 3.2. 

Figure 6 shows the hardware scheduler connected to a 
processor as an I/O port.   

CPU

Memory

Hardware
Scheduler

Interrupt

Address/Data Bus

 
Figure 6. The hardware scheduler connected as 

an I/O device. 

In this configuration, the hardware scheduler has one 
address to which the commands can be written and from 
which the status can be read.  The hardware scheduler 
directs the processor to switch to another task when a 
higher priority task is ready by sending an interrupt signal 
to the CPU.  When the CPU is interrupted, it transfers the 
control to the context switcher, which reads the task ID 
from the hardware scheduler, stores the context of the 
current task, and switches the context to the task with the 
ID read from the hardware. 

4. Software Support 
The RTOS consists of processor-independent code and 

processor-specific code.  Therefore, the RTOS for the 
hardware scheduler can be easily ported by modifying the 
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processor-specific code.  Since the hardware scheduler 
cannot directly access the registers of the processor, the 
context switching is done in software.  During context 
switching, the contents of the registers are stored in the 
stack of the current task, and the contents of the registers 
of the new task are restored.  The context switching time 
depends on the number of registers of the processor.  The 
APIs of the hardware scheduler are provided as the kernel 
services.  The following steps show a pseudo code for a 
typical application: (a) configure scheduler, (b) initialize 
the RTOS, (c) create tasks and (d) start multitasking. 

When the multitasking is started, the hardware 
scheduler schedules tasks.  It interrupts the RTOS to per-
form a context switching to run the first task.  

5. Automatic Customization of the Scheduler 
Figure 7 gives an overview of the flow of our sched-

uler customization tool.   

Figure 7. The Scheduler Customization Flow. 

 

A Graphical User Interface (GUI), which consists of 
set of HTML forms, captures the user inputs and passes 
them to the scheduler customization application (devel-
oped in C-Language).  We call this application Scheduler 
Configurator (SCon).  SCon processes the user inputs, 
validates them and generates the scheduler hardware files 
(Verilog format) and the corresponding software that en-
ables a RTOS to use the hardware.  Also, SCon generates 
the necessary Verilog files (wrapper) to interface the 
hardware scheduler to the processor.  Moreover, SCon 
generates Synopsys DCTM synthesis scripts for the hard-
ware scheduler.   

The following is a partial list of the user specified pa-
rameters: 

•  Number of tasks 
•  Number of external Interrupts 
•  Timer Resolution 
•  Processor Type 
In order to generate the hardware files, a database of 

parameterized Verilog files of each system component is 
being used.  The Verilog files in the database are written 
in such a way that a custom version of the file can be gen-
erated using a Verilog PreProcessor (VPP) [15].   

Once the user configurations and settings are captured, 
SCon selects from the hardware database the suitable 
scheduler bus interface and the parameterized verilog files 
of the hardware scheduler.  Next, SCon sets the parame-
ters of each verilog file to reflect the user input.  The 
hardware components (Verilog files) are passed to VPP 
which processes them and generates new customized Ver-
ilog files.  Finally, SCon configures the RTOS according 
to the user input.  The output from SCon is a set of Ver-
ilog files for the hardware, a set of C and assembly files 
for the RTOS and Synopsys DC synthesis script file. 

6. Experiments and Results 
We verified the hardware scheduler and the RTOS us-

ing hardware/software co-design tools, namely, Synopsys 
VCS, Mentor Graphics Seamless CVE and Mentor 
Graphics XRAY.  VCS is used for simulating the hard-
ware in Verilog HDL.  Seamless CVE interfaces the 
hardware and the software simulators.  XRAY is used as 
the instruction set simulator and debugger.  We simulated 
a System-on-Chip (SoC) similar to that illustrated in Fig-
ure 6.  The hardware scheduler is set up as an I/O device 
as illustrated in Figure 6.  We used a PowerPC 750, with 
Level 1 instruction and data caches each of 32KB, as the 
processor which runs at 400 MHz while the bus runs at 
133 MHz and can deliver a peak performance of 
733 MIPS [17].  The memory size of the system is 4MB.  

6.1. Scheduler Overhead  
The simulation results show that for a system that util-

izes the hardware scheduler, the assembly instructions 
executed by the scheduler and the background time tick 
processing are eliminated as shown in Table 2.  In Ta-
ble 2, the programs were compiled using the GCC cross 
compiler for PowerPC, and the results are in number of 
assembly instructions.  MicroC/OS II scheduler is a prior-
ity-based scheduler [7].  For time-tick processing, the 
RTOS periodically checks every task and decrements the 
delay value if it is not zero.  The upper bound of the proc-
essing time is directly proportional to number of tasks in 
the system.  This overhead is large if there are many tasks 
and the time tick resolution is high.  As a result, the CPU 
utilization is reduced, and tasks may miss their deadlines.  

Table 2. The assembly instruction execution 
comparison between Micro-C/OS II and the 

hardware scheduler. 

 Micro C/OS II 
 

Hardware 
Scheduler 

Scheduler 69 0 
Time-tick 
processing 47+47*(number of tasks) 0 
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Figure 8 shows the overhead percentage (percentage of 
CPU time spent processing the time ticks) as a function of 
the time tick resolution.  Figure 8 shows that for a system 
with 32 processes (tasks) and a time tick of 1 ms, 0.21% 
of the CPU time is wasted (i.e., used for time tick process-
ing). 
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Figure 8. The scheduler and the time tick proc-

essing overheads in MicroC/OS II. 
 

However, if the time tick resolution becomes 10 us, 
21.16% of the CPU time is wasted.  Since the hardware 
scheduler eliminates such overheads, the response time 
and the interrupt latency are improved.  The appropriate 
task can be executed when the hardware scheduler sends 
an interrupt to the processor.  If the system has a fast 
clock so that the 21.16% overhead does not make the sys-
tem miss any deadlines, the introduction of the hardware 
scheduler would make the system run at a clock speed 
that is 21.16% less.  A reduced clock frequency allows a 
lower core voltage which results in a reduction of the 
processor power consumption (please note that the power 
consumption of the hardware scheduler is negligible when 
compared to the processor power consumption since the 
hardware scheduler occupies far less area – see Table 4 – 
than the processor and has much less transistor switching 
activity).    

 
Example 2. It is likely that next generation handheld 

devices will support multiple applications such as wireless 
communication and a Voice User Interface (VUI).  These 
applications may work well under different scheduling al-
gorithms.  For example, the wireless communication appli-
cation may work well under an EDF scheduler, and the 
VUI may work well under a priority-based scheduler.  If the 
handheld device has only one scheduling algorithm, it 
cannot efficiently support both applications.  However, if 
the handheld device has a configurable hardware sched-
uler, multiple applications can select the scheduling algo-
rithm, which fits their requirements.  � 

 

 

In this experiment, we simulate the scheduler for such 
a handheld device using Seamless CVE.  Initially, the 
handheld device is running a VUI application using a pri-
ority-based scheduling algorithm.  When the user 
switches to a wireless communication application, the 
VUI application must be suspended.  The software sends 
command to the hardware scheduler to suspend the VUI 
application, to configure the hardware scheduler to oper-
ate in the EDF mode, and to create tasks for the wireless 
communication application.   

 

Table 3. Number of PowerPC assembly            
instructions of the APIs. 

API # of PPC Assem-
bly Instructions 

WCET (# of 
cycles) 

configureScheduler 37 230 
SuspendTask 21 125 

 

The application-switching overhead is shown in Ta-
ble 3.  The values in Table 3 are in number of PowerPC 
assembly instructions.  The actual commands sent to the 
hardware scheduler are one PowerPC assembly instruc-
tion for suspending a task and for configuring the hard-
ware scheduler, and three PowerPC assembly instructions 
for creating a task.  Moreover, each API has less assembly 
instructions than the context switching routine.  This dy-
namic change of the scheduler at runtime is not supported 
by most commercial RTOSes.  Furthermore, even if a 
software RTOS were to support such dynamic changing 
of the scheduler, such a software RTOS would be an or-
der of magnitude or more slower (especially considering 
WCET cache behavior) in changing the scheduler.  Ta-
ble 3 assumes that cache misses take at most eight cycles 
to fill a cache line. 

In our case, due to limited memory in the handheld 
device, the software RTOS schedule change causes the 
memory buffer in the handheld device to overflow, 
whereas the speedy hardware scheduler change takes ef-
fect before the memory overflows.  Furthermore, during 
actual operation, the software RTOS would cause some 
timing constraints to be missed while the hardware RTOS 
allows all timing constraints to be met, especially when 
considering the memory interface. 

6.2. The Hardware Scheduler Synthesis Results 
We developed a RTL Verilog model for the hardware 

scheduler.  As illustrated in Table 4, we synthesized the 
hardware scheduler for the HP 0.35µ process.  The syn-
thesized hardware supports up to 16 tasks and up to eight 
external interrupt sources.  The hardware scheduler uses 
1115 standard cells and occupied an area of 0.24 mm2. 
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Table 4. Synthesis result using                           
HP 0.35µµµµ process. 

Number of standard cells Area (mm2) 
1115 0.24 

 

Table 5 shows the synthesis result using Altera Quar-
tus II for the EP20K family.  The hardware scheduler uses 
421 logic elements and 564 registers. 

 

Table 5. Synthesis result using Altera Quartus II 
for EP20K 

Number of Logic Elements  Number of Registers 

421 564 

 

7. Conclusion 
We implemented a configurable hardware scheduler 

and a real-time operating system.  Both components are 
verified in a hardware/software co-design environment.  
The configurable hardware scheduler is flexible; it sup-
ports three scheduling algorithms, namely, priority-based, 
rate monotonic, and earliest-deadline-first.  The schedul-
ing and the time-tick processing overhead are eliminated 
from the real-time operating system.  Also, we presented 
a tool that can customize the hardware scheduler to suite a 
particular system. 
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